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Toward a Model-Based Bayesian Theory for 
Estimating and Recognizing Parameterized 
3-D Objects Using Two or More Images 
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Abstract-A new approach is introduced to estimating object sur- 
faces in three-dimensional space from two or more images. A surface 
of interest here is modeled as a 3-D function known up to the values of 
a few parameters. Although the approach will work with any param- 
eterization, we model objects as patches of spheres, cylinders, planes, 
and general quadrics-primitive objects. Primitive surface estimation 
is treated as the general problem of maximum likelihood parameter es- 
timation of the a priori unknown primitive surface parameters based 
on two or more functionally related data sets. In our case, these data 
sets constitute two or more images taken by cameras at  different lo- 
cations and orientations. A simple geometric explanation is given for 
the estimation algorithm. Although various techniques can be used to 
implement this nonlinear estimation, we discuss the use of gradient 
descent. Experiments a re  run and discussed. Our approach includes 
the commonly used stereo approaches as special cases. The Cramer- 
Rao lower bounds are derived for the achievable error covariance mat- 
rices for estimators for the a priori unknown parameters. No surface 
reconstruction can be more accurate than these bounds. The depen- 
dence of the bounds on object surface pattern and on the camera and 
object geometry is shown explicitly. An interesting result arising in this 
work is that maximum-likelihood estimation of 3-D surfaces also re- 
quires maximum likelihood estimation of the pattern on the object sur- 
face. Object surface segmentation into primitive object surfaces, and 
primitive object-type recognition a re  readily implemented using the 
probabilistic framework developed in this paper. The attractiveness of 
our probabilistic formulation is that it now permits a fully Bayesian 
approach to 3-D surface estimation based on images taken by cameras 
in two or more positions. For example, recent follow-on papers include 
estimation of parameterized surfaces based on a large number of im- 
ages taken by a moving camera [ll], [27], estimation of stochastic sur- 
faces based on images taken by cameras in two or more positions [3], 
and estimation of object surfaces given contour models for the patterns 
on the surface [28]. 

Zndex Terms-Bayesian parameter estimation, Cramer-Rao bounds, 
estimation accuracy, maximum likelihood surface estimation, robot vi- 
sion, shape from motion, stereo, 3-D shape from multiple images. 

I. INTRODUCTION 
SSENTIALLY all 3-D object surface estimation from E multiple views to date is based on either active stereo 
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using a laser and one or two cameras for triangulation, or 
on passive stereo involving matching points in two images 
and using triangulation, or on optical flow [9], [ 151, [ 181, 
[24], [ 101. We suggest a new approach, first presented in 
111, [2], in which surfaces of complex objects are approx- 
imated by a small number of parameterized 3-D surface 
patches, and these parameters are estimated from two or 
more images taken by calibrated cameras from different 
locations and directions. Note that most manufactured 3-D 
objects of interest can be well represented by a small 
number of patches of planes, spheres, cylinders, and 
cones, and many natural 3-D surfaces are also well rep- 
resented by these surface patches. (In theory, our ap- 
proach applies to any parameterized surface.) We view 
the problem within the general context of estimating a 
priori unknown parameters given a data set consisting of 
two or more functionally related subsets. Estimation ac- 
curacy is achieved by processing data in large blocks 
(large patches of images in our problem). An important 
contribution of this paper is that we derive the expression 
for the joint likelihood of two images taken by cameras 
in different positions. This likelihood is a function of a 
priori unknown parameters, namely, the parameters spec- 
ifying the 3-D object to be estimated. We then treat 3-D 
object surface estimation as maximum likelihood estima- 
tion, thus using estimators having very desirable proper- 
ties. However, of greater significance is that being able 
to express the joint likelihood of data in two or more im- 
ages as a function of the unknown parameters to be esti- 
mated opens the way to treating the estimation of 3-D ob- 
jects based on these images entirely within a Bayesian 
framework. This permits the ready solution of many prob- 
lems. As an example, we derive the Cramer-Rao lower 
bounds on the error covariance matrix for the estimation 
of the a priori unknown parameters characterizing a prim- 
itive 3-D surface patch. No surface reconstruction can be 
more accurate than these bounds! Other extensions that 
we have formulated and explored based on Bayesian 
methods are the maximum a posteriori likelihood esti- 
mation of surfaces modeled by stochastic processes [3], 
and the maximum likelihood estimation of surfaces based 
on a sequence of images taken by a moving camera but 
using a modest amount of storage and computation [ 111, 
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[27]. Our approach to the processing of a sequence of im- 
ages is more general than and has advantages over the use 
of the Kalman filter. Since we use the joint likelihood for 
patches of two or  more images as a function of the a priori 
unknown 3-D surface parameters to be estimated, other 
Bayesian problems are easily formulated and imple- 
mented. For example, by using sizable patches of images, 
the form of the dependence of the likelihood function on 
the parameters to be estimated becomes simple, and min- 
imum probability of error recognizers can be easily im- 
plemented for recognizing the shape model for the patch 
of surface being viewed, i.e., for deciding whether it is a 
plane, a sphere, a cylinder, etc. (see [12]). Being able to 
compute the joint likelihood of patches of data from two 
or more images also permits us to do maximum likelihood 
segmentation of a complex 3-D surface into primitive sur- 
faces, each specified by a single model. For example, the 
segmentation can be into smooth surfaces, i.e., those 
without tangent discontinuities (see [26]). Our approach 
assumes the use of calibrated cameras. If the camera cal- 
ibration is unknown, then our approach can still be used 
but must incorporate the a priori unknown camera-model 
parameter-values as additional parameters to be esti- 
mated. 

Central to 3-D surface estimation from two (or more) 
images taken from cameras in different locations and ori- 
entations has been the pairing of points from two images 
that are images of the same point on a 3-D surface. This 
matching of points in two images is usually done in either 
of two ways. 1) If the two cameras are physically close 
and their optical axes are almost parallel, then their im- 
ages will differ from one another only by translation-one 
will be a shifted version of the other. Then image 1 can 
be partitioned into patches, and each patch cross-corre- 
lated with image 2 to find its location in image 2. Once 
this correspondence is known, the location of the surface 
region in 3-D space seen in the pair of corresponding im- 
age patches can be determined by triangulation. Since the 
surface region seen is usually curved, one would like the 
patches to be small in order to locate the surface region 
seen accurately. However, if the images are noisy, large 
surface patches must be used in order to overcome the 
effects of the noise, thus introducing some error in deter- 
mining the correspondences between pairs of points that 
are in the patch interiors. In addition to this correspon- 
dence error, there is always some error in camera calibra- 
tion. These sources of error can result in appreciable 
triangulation error because the camera optical axes are al- 
most parallel. 2) An alternative approach that permits a 
large angle between the camera optical axes to improve 
triangulation accuracy is to match corresponding small lo- 
cal features in the two images. An example of such a fea- 
ture is a vertex of a polyhedron or an arc in a boundary. 
The difficulty here is that a large amount of pattern rec- 
ognition may be necessary to recognize a pair of corre- 
sponding features in the two images. 

Among a few interesting new approaches to stereo 
ranging are the following. Bolles and Baker [5] consider 
a situation in which a camera moves in a straight line with 

the direction of the optical axis fixed (in the experiments 
described), and successive images are taken very close to 
one another such that a picture differs from its predecessor 
only by a shift of one or two pixels. Then the images are 
stacked one in front of the other such that they form a 
three dimensional array with time being the third axis. 
The result is that a point on the object surface is now seen 
as a line or a smooth curve in this three dimensional array, 
and surface point estimation is accomplished by line or 
curve estimation in 3-space. Among the potential draw- 
backs of this approach are that camera motion is re- 
stricted, data must be processed at a very high rate, not 
much information has been presented on the amount of 
required processing for estimating a suitable number of 
lines, and no information has been presented on the ac- 
curacy of the method. Miller [6] developed an approach 
where two cameras scan a scene along epipolar lines as- 
sociated with the same epipolar plane. His problem is to 
estimate the disparity between the two images, i.e., to 
match up points on the line in image 2 with points on the 
line in image 1 that are views of the same surface point. 
This is accomplished through use of a phase-locked loop. 
The system has the advantage of potentially working in 
real time. It has the potential disadvantages that the ac- 
curacy may not be very good (no measure is given), oc- 
clusion is a problem, initial lock-in may be a problem. 
Castan and Shen [7] model the distortion from one image 
to another under the assumption that the surface being 
viewed is a planar patch. They approximate images lo- 
cally as second degree polynomials using Taylor series, 
explore features that are invariant from one image to the 
other, and use the equations relating the Taylor series ex- 
pansions at corresponding points in the two images to es- 
timate the planar surface. No mention seems to be made 
of how they solve the correspondence problem, and other 
important details are missing, so that it is difficult to ap- 
preciate the advantages, disadvantages, and accuracy of 
the method. Cohen [29] deals with planar surface patches, 
and uses Markov Random Fields (MRF) to model pattern 
texture on these surfaces. Planar patch orientation and lo- 
cation is then estimated by comparing the parameters of 
MRF models fit to pairs of patches one in each image. 
This elegant work represents a significant, potentially very 
effective advance in 3-D surface reconstruction, and is in 
harmony with our concept of the joint estimation of 3-D 
surface model and surface pattern model in this paper and 
in [28]. Faugeras, Ayache, and Faverjon [8] develop the 
idea of estimating points on a 3-D object surface, lines on 
a surface (and suggest planar surfaces) from a sequence 
of images. More specifically, they assume that some 
method has been used to estimate points on a surface based 
on a pair of images, and assume that the probability dis- 
tribution for these estimates can be determined. They then 
assume that a sequence of such estimates and associated 
distribution are known for a sequence of images. Their 
contribution, then, is to use the extended Kalman filter 
for combining this sequence of estimates to obtain im- 
proved estimates of the surface points. They derive the 
equations for estimating points and lines, and suggest that 
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it can be extended to planes. Among the errors they take 
into account, are those in camera calibration. Their con- 
cept is important, though they do not tackle here the prob- 
lem of initially optimally estimating the surface points or 
lines from a pair of images. Ohta and Kanade [4] extend 
an approach of Baker but use intervals between edges in- 
stead of edges themselves, and apply the dynamic pro- 
gramming technique performing both the intra- and the 
inter-scanline search simultaneously for matching points 
in the two images. Waxman and Wohn [lo] take a differ- 
ent approach, focusing on the use of optical flow to esti- 
mate the normals of 3-D surfaces by solving some local 
equations. To estimate position, they suggest using bi- 
nocular optical flow. Being able to extract information by 
analytically solving equations is attractive. On the other 
hand, 3-D surface estimation based on optical flow is less 
accurate than the use of stereo because of the small base- 
line. Last, we mention a recent paper by Eastman and 
Waxman [25]. They use two cameras having parallel op- 
tical axes and locally model the disparity function as a 
quadric. Then, upon matching corresponding contours in 
the two images, they can solve for the a priori unknown 
parameters in the quadratic disparity function, and from 
this can obtain an estimate of a local quadric approxima- 
tion to the 3-D surface depth function. This has some sim- 
ilarity to our estimation algorithm in Section I1 (presented 
earlier [2]). There are significant differences. Their ap- 
proach has the desirable feature that once contour match- 
ing has been accomplished, estimation of the disparity 
function locally is computationally simple. Some positive 
features of our approach are the following. We estimate 
sizable 3-D surfaces directly, and these surfaces can be 
arbitrary parameterized or stochastic surfaces. Camera 
relative positions can be completely arbitrary. The com- 
putational complexity of matching up pairs of contours- 
one contour in each image-is avoided; instead we search 
in the surface parameter space (which could also be costly, 
but can be done with simple parallel processing). Last, 
since our formulation is a Bayesian one we can make op- 
timal use of probabilistic prior information concerning the 
surfaces to be estimated. Our paper is an expansion of one 
where our 3-D surface estimation algorithm was first pro- 
posed [ l ] ,  [2]. The preceding papers have been directed 
at estimating points, curves, planes, cylinders, spheres, 
or general parameterized surfaces in 3-D space. In general 
for making inferences about 3-D surfaces irrespective of 
the type of sensing used, the idea of Besl and Jain [19] 
and Bolle and Sabbah [20] for the representation of sur- 
face patches by their Gaussian and mean curvatures ap- 
pears to be a very useful generalization. 

Sections 11-A-11-F introduce our 3-D surface estima- 
tion algorithm, show examples of its use with planar, 
spherical, and cylindrical surfaces, and show that the es- 
timation is maximum likelihood estimation. The shape of 
the likelihood function, as the parameters to be estimated 
are varied, is explored. The algorithm in Section 11-D, 
based on the use of a sequence of images, is a computa- 
tionally simple way around the problem of having to min- 

imize a multimodal performance functional. Experiments 
are shown with both partially artificially generated data, 
and with real data taken by a moving camera. Section 11-F 
deals with a fundamental complication arising from the 
quantization of images into pixels. To this point, the fo- 
cus has been on the imaging geometry, an algorithm for 
3-D surface estimation, and experiments. 

Sections I11 and 111-A are devoted to the derivation of 
the Cramer-Rao Lower Bounds on the error covariances 
for the a priori unknown parameters to be estimated for 
the object models used. This involves working through 
some algebra, but is important because in 25 or more years 
of published literature on computer vision, there are al- 
most no upper or lower bounds on achievable estimation 
accuracy tied to the raw image data. The only published 
results we are aware of are [2 11 and [22], [23]. The pres- 
ent problem is sufficiently general that derivation of the 
C.R. Bounds here provides insight into how they may be 
applied elsewhere. For those not interested in the deri- 
vation of the bounds, the final expressions are given by 
Eqs. (37) and (41), and pertinent discussion is given in 
Section 111-A. Section 111-B and 111-C provide a physical 
interpretation of the Bound, showing the explicit depen- 
dence on camera geometry, object surface pattern, and 
object surface parameterization. And Section 111-D con- 
tains an example of a numerical computation of the 
Bound. 

A .  Notation and Description of Camera Motion 

Let P be a point in 3-D space and rrT = (x', y ' ,  z' ) be 
its representation in the fixed orthogonal world reference 
frame.' Since we assume that objects do not move, this 
reference frame is fixed with respect to the objects viewed 
by the camera, and we will call it the object reference 
frame (ORF). Let rT = ( x , y , z )  be the representation, of 
the point P ,  in the orthogonal reference frame attached to 
the camera. This reference frame, the camera reference 
frame (CRF), is such that: 1) The camera optical axis is 
parallel to the z axis, and it looks at the negative z axis. 
2) The x and y axes are parallel to the sides of the image. 
3) The origin of the camera reference frame coincides with 
the center of the image plane. The image is corrected so 
that the view is not inverted top to bottom and left to right, 
i.e., a central projection is used. 

Let B denote the 3 x 3 orthogonal rotation matrix that 
specifies the three unit coordinate vectors for the CRF in 
terms of the three unit coordinate vectors for the ORF. 
Let r: specify the origin of the CRF in the ORF. Then 

r = B T ( r '  - r : ) ,  and r' = B r  + r: .  (1 )  

Note that the rotation matrix B and the translation vector 
r: are assumed to be known. 

'A symbol in boldface is a column vector, a superscript capital T at- 
tached to a vector denotes vector transpose. 
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B. Images of an Object Surface Point in Two Image 
Frames 

Fig. 1 illustrates the orthographic imaging model [15] 
used, i.e., all rays from points on the object surface to 
the image plane are roughly parallel. This model, an ap- 
proximation to the pinhole model (perspective projec- 
tion), is explained in Appendix A. It is applicable when 
the object diameter is small compared with object to cam- 
era distance. With slight modification, all of our algo- 
rithms can be run using the pinhole model, and the ex- 
periment using real images taken by a moving camera, 
shown at the end of Section 11-D, used the pinhole model 
in the surface estimation. Let P denote a point on a pa- 
rameterized 3-D surface of interest. Point P on the object 
surface is seen as points having coordinatp s and U in 
images 1 and 2,  respectively. We assume a Lambertian 
rejectance model. Then the images of point P at s and U 
will have the same intensity. The techniques proposed will 
not apply without modification to specular reflectors be- 
cause the location of points on the object surface at which 
specular reflection occurs depends on the camera loca- 
tion. Since most surfaces of interest are largely Lamber- 
tian, the assumption is a useful one. Hence, 

I 2 ( 4  = Il (4 (2) 
where Il (u)  and 12( s )  are the picture functions (image in- 
tensity functions) in Frames 1 and 2,  respectively. For 
those cases where the Lambertian assumption does not 
apply, a possible modified approach is to use an edge map. 
Here, pixels are given values of 128 or 0 depending on 
whether they are detected as being edge points or non- 
edge points, respectively. These maps are then smoothed 
to obtain more continuous arrays, and these are used as 
though they are regular picture functions in our estimation 
algorithms. The usefulness of the edge map is that it is a 
representation of rapid changes in the object surface pat- 
terns, and largely unaffected by the presence of some 
specular component in the object surface. See [24] for 
other approaches to partially specular surfaces. 

Our approach is applicable to any parameterized sur- 
face. However, in this paper we illustrate the approach 
through the use of planar, cylindrical, spherical, and gen- 
eral quadric primitive surfaces. The equation of the gen- 
eral quadric surface is given by (3). The other three prim- 
itive quadrics are obtained by imposing suitable 
constraints among the coefficients in ( 3 ) .  

allx2 + 2a12xy + 2a1,xz + az2y2  + 2a2,yz 

+ a3,zZ + 2aI4x + 2aZ4y + 2 ~ ~ ~ 2  + = 0. ( 3 )  

These surfaces are described in the ORF which we take 
to be CRF1, i.e., the first camera reference frame, and 
are uniquely determined by specifying the values of a pa- 
rameter vector a. Denote a' = ( a l l ,  a I 2 ,  * * * , a44) .  For 
a general surface, .a will have K components. Thus, the 
image at point s ' = ( x  ( 1 ), y ( 1 ) ) in the first image frame 
is the image of a point having coordinates x ( 1 ), y ( 1 ), 
z ( 1 ) on the object surface where z ( 1 ) is the solution of 

y' 4 
Parameterized 

Surface in 
3-D Space 

2' 

, 

Fig. 1 .  Images of an object surface point in two image frames. 

( 3 )  when x (1) and y (1) are specified. We see that the pic- 
ture function at point s in CRFl is the picture function at 
point U in CRF2 where 

(U', z ( 2 ) ) '  = B T ( r (  1)  - rc(2)) (4)  
and U = (x  ( 2  ), y ( 2 ) ) . Parameters specifying this trans- 
formation are three rotation angles specifying the rotation 
matrix B, and three translation components specifying the 
location r, ( 2 )  of the origin of CRF2 in CRFl . Denote 
this six component parameter vector by b. Denote the 
functional relationship between s and U by ( 5 ) .  

U = h ( s ,  b,  z ( s ,  a ) ) .  ( 5 )  
Note U depends explicitly on s and z ( 1 ), and z ( 1 ) is de- 
termined by both s and a as shown in (3). 

C. On the Form of u = h (s, b, z(s, a ) )  

Assume we have a rigid surface in 3-D space. The 
equation of this surface with respect to the object refer- 
ence frame is 

g ( r ( 1 ) )  = 0 
and for CRF2, upon using (4), 

Denote 

C = B'(2) (8) 
and 

(9) d = -BT(2) r,(2). 

Then 

r ( 2 )  = C r ( 1 )  + d (10) 

We partition the C matrix as: 

Cll c12 

= [ e 2 ,  c221 
where CI1 is 2 X 2, c12 and cl1  are 2 x 1 and c22 is a 
number. Partition d as d ' = ( e  ' d , )  where e is 2 x 1 and 
d3 is a number. 



1032 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 1 1 ,  NO. IO, OCTOBER 1989 

Then from the preceding 

~ ( 2 )  = C l l u ( l )  + cI2z(1) + e. (12) 
Equation (12) is the parametrized equation of a line. 

That is, a point with coordinates u T (  1 )  = (x( l ) ,  y (  1 ) )  
in the first frame is the image of some point in the surface. 
Equation (12) gives the locus of possible locations (pa- 
rametrized by the unknown z ( 1 ) ) that the point may have 
in frame 2.  This is the epipolar line in image plane 2 as- 
sociated with point U ( 1 ) in image plane 1. 

11. ESTIMATION OF SURFACE PARAMETERS U USING 

Two IMAGES 
If b is known and a is aT, the true a ,  then 

zl(s) = I2 (h ( s ,  b, z(s, U T ) ) )  (13) 
for each s. Choose a square M X M pixel window in 
CRF1. Denote this pixel set by D.  Consider the error 
measure 

Then e D ( a )  is a minimum at a = u p  Our problem is to 
estimate aT by minimizing (14) with respect to a .  An 
interpretation of (13) is that the image Z2( U )  can be trans- 
formed into the image ZI( s)  by a varying scale change that 
locally consists of a rotation, a nonisotropic stretching, 
and a translation. 

The minimization technique we have used is gradient 
descent. The gradient of (14) is 

3 = -2M-2 c [Z,(s) - Z 2 ( U ) ]  - 
aa s E D  aa 

where from (12) 

U = h ( s ,  b, ~ ( s ,  a ) )  = Clls + c12z(s, a )  + e .  (16) 

Equation (15) is an explicit function of s, b, z ,  and is 
implicitly dependent on a because of the determination of 
z by s and a .  Use of the chain rule gives2 

a z 2 ( 4  - az2(u) ah(s ,  b, Z ( S ,  4 )  
aa au aa 

with ah (s, b, z(s, a ) ) / a z  = cI2. In general, it may be 
inconvenient to express z as an explicit function of a .  In 
such cases to proceed further denote the left side of (6) 
by g(x ,  y, z ,  a ) .  Then (6), the equation of the object sur- 
face, is g(x, y ,  z ,  a )  = 0. Hence, we can write 

*The notation used here is that aZ,(u)/aa is a K component row vector, 
and ah(s, b, z(s, a) ) /aa  is a 2 X K matrix. 

Putting (1  6)-( 18) together results in 

Hence, computation of (19) involves processing the data 
to obtain ZI( s) ,  Z2( U), and aZ2 ( u ) / a u ,  and computing cI2 
and the last two partial derivatives from the known cam- 
era motion and knowledge of g(x, y, z ,  a ) .  

A steepest descent algorithm for minimizing (14) is 

We use a A, that depends on eD(a , )  and deD( a,)/aa and 
has magnitude that goes to 0 as n goes to infinity. 
A. Algorithm Operation-Znterpretation, and 
Experiments with a Sphere 

described by the equation 
To illustrate the approach, consider a spherical surface 

2 
(x - xOy + ( y  - yo? + ( z  - z o )  = R2. (21) 

For this surface, z can be solved for explicitly, via 
2 112 

2 = zo f ( R 2  - (x - xo)2 - ( y  - yo) ) . (22) 
The positive square root is used since the outside surface 
of the sphere is seen by the camera looking in the negative 
z direction. Hence, (y) = (- az - az - az -) az 

axo’ ayo’ azo9 aR 

= (b  - xo) / ( z  - Zo) ,  (Y - Y O M Z  - z o h  

1, R / ( z  - 20))  (23) 
and z - z O  = (R2 - (x  - xO)* - ( y  - yo)2 )112 .  The 
vector az/aa can be computed directly from this. 

The analogous equations for planes, cylinders and gen- 
eral quadrics are presented in Appendixes C ,  D, and E, 
respectively. 

Fig. 2 is useful for illustrating, in two dimensions, the 
operation of our algorithm for estimating aT. Spheres in 
3-D are shown as circles. Consider the processing of the 
image patch between points s’ and s” in Frame 1 .  This 
patch is the image of the patch between points p ’  and p “  
on the true sphere labeled aT. The same patch on the 
sphere surface gives rise to the image patch between points 
U’ and U ”  in Frame 2. Now suppose the system’s esti- 
mation of aT is U .  The associated sphere is shown. The 
performance functional for the estimate of a is given by 
(14) and is computed as follows. The system thinks that 
the locations on the sphere surface that give rise to the 
images at points s’ and s” in Frame 1 are the intersections 
of the dashed lines, from s’ and s”, with the sphere la- 
beled d .  These sphere surface points would be seen as the 
images at point 12’ and 12” in Frame 2. Hence, the system 
takes the image patch between points 1 2 ’  and 12” in Frame 
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Image 1 

a) 
Image 2 

Fig. 2 .  Two-dimensional illustration of the geometry for the surface esti- 
mation algorithm. 

2 and assumes that the image at each point U in this in- 
terval is the same image as the image at a point s in the 
interval between s‘ and s” in Frame 1.  The points U and 
s are related geometrically as in the figure, or algebrai- 
cally by (4). Performance functional (14) requires com- 
puting the error Zl(s) - Z2(h(s, b, z ( s ,  a ) ) ) .  Of course, 
in the absence of image noise, (14) is zero only when a 
= UT. 

We make the following interesting observations. From 
the geometry of image formation in Fig. 2,  the varying 
scale change that maps the image patch over interval [ s’, 
s ” ]  in Frame 1 into the image patch over interval [U’, U“ J 
is seen. Note that both a scale change and a translation 
are involved in this 2-D illustration. 

If the incorrect a is used in computing the performance 
functional (14), the patch of image used in Frame 2 is that 
over the interval [ 12 ’, 12” 3 .  Note that this interval is both 
a shift and a varying scaling of the interval [ U ’ , U ” 1. If 
instead of a sphere, we were dealing with a planar sur- 
face, the scale change would be constant throughout the 
image. 

The interpretation is further illustrated by the following 
3-D computer simulations. Fig. 3(a) and (b) are two 
frames illustrating images of the same sphere but taken at 
different locations and orientations. The angle between the 
optical axes of the two cameras is 45 O . The data was gen- 
erated by taking a real image with a T.V. camera and 
projecting the image pattern onto a sphere, from a few 
different directions. The pattern projected onto the sphere 
in this way is the pattern that is then viewed by the two 
cameras to create Frames 1 and 2. Note that all these pro- 
jections are done by computer simulation. The image 
patch used in Frame 1 is the interior of the square shown 
there. Point P is its center point. Points P in Frames 1 and 
2 are locations of images of the same point on the 3-D 
sphere surface. Note how the image in the vicinity of Point 
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Fig. 3 .  Two computer generated images of a sphere taken at different lo- 
cations and orientations. (Section 11-A.) 

Fig. 4 .  Image boxes are numbered 1 through 6,  running left to right, top 
to bottom. Box 1 is taken by camera 1 .  Box k ( k  = 2, 3 ,  . . . , 6 )  is 
associated with the estimate of a in line k of Table I .  

TABLE I 

~~ 

aT 
1 

I 0.00 I 0.00 I -2000.00 I 128 
1 0.41 I 1.13 I -1999.89 I 128 

P in Frame 2 is a varying scaled transformation of the 
image in the vicinity of Point P in Frame 1. In Fig. 4, we 
refer to the six image boxes as 1 through 6 starting with 
the upper left and moving left to right and top to bottom. 
Box 1 is the image shown in the square window in Fig. 
3(a). The system begins with a guess as to a. This initial 
guess for a is shown as that associated with Box 2 in Table 
I .  Using this a, for each point s in the window in Fig. 3(a) 
the system takes the image at point h (s ,  b, z (s ,  a ) )  in 
Fig. 3(b) and puts this picture function value at location 
s in an array. The image so formed is that in Box 2. It is 
the difference of the picture functions of these two images 
that enters as Zl(s) - Z2(h(s, b, z(s ,  a ) ) )  in (14). (If this 
a were equal to aT, then in the absence of image noise, 
the image in Box 2 would be identical to that in Box 1.)  
Box 3 is the image formed in this way using al, the pa- 
rameter vector following the first iteration of our param- 
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eter estimation algorithm. In Boxes 4 and 5 are the trans- 
formed images associated with a values at intermediate 
stages of the estimation process. Finally, Box 6 is the im- 
age associated with the a value found at the last estima- 
tion stage. These a values for the stages associated with 
the six boxes are shown in Table I. If the final estimate 
ci is equal to aT, then in the absence of image noise, the 
images in boxes 1 and 6 would be identical. 

Figs. 5 and 6 show the shape of the error function e D ( a )  
for the experiment described. Fig. 5 shows the graph of 
the error function produced by holding z o  and R fixed at 
the true values and varying xo and yo over the ranges - 150 
< xo < 200 and - 170 < yo < 170 where aT is given in 
Table I .  Fig. 6 shows the same error function with xo and 
R held fixed and yo and z varied over the ranges - 90 < 
yo < 120 and -2120 < z o  < -1880. Note that the error 
function changes much more rapidly with change in z o  
than with change in xo or yo where z o  is the distance from 
the sphere center to the camera. 

B. Experiments with a Cylinder when Using Two 
Images 

There are a number of possible parameterization for the 
cylinder. The following one has been found to be desir- 
able for use in the algorithm given in (20). Consider Fig. 
7. Then the cylinder axis location and orientation are 
specified by the parameter vector (xo ,  zo,  8, 4). We ar- 
bitrarily choose yo to be any point in the vicinity of the 
image patch being processed in CRF 1. Then xo and z are 
the remaining coordinates to be determined for specifying 
a point on the cylinder axis. As can be seen in Fig. 7, 8 
and 4 are the angles specifying the cylinder axis orienta- 
tion, with 8 being the angle between the z axis and the 
projection of the cylinder axis into the xz plane, and 4 
being the angle between the y axis and the cylinder axis. 

Fig. 8(a) and (b) are two frames illustrating images of 
the same cylinder but taken at different camera locations 
and orientations. The angle between the optical axes of 
the two cameras is 45". The data were generated and the 
images were formed in the same way as described in Sec- 
tion 11-A for the sphere. The image patch used in image 
1 is the interior of the square shown there in Fig. 8(a). 
The portion of the cylinder surface seen in this square 
patch, is seen as the patch in the four sided polygon in 
image 2 shown in Fig. 8(b). (Observe that there is a 
dashed line along the left border of the cylinder image in 
Fig. 8(b). This is due to spatial quantization and the fact 
that the border occurs at the image of a portion of the 
surface pattern where there is a discontinuity from a white 
region to a dark region in the pattern intensity.) In Fig. 
9, we refer to the six image boxes as 1-6 starting with the 
upper left and moving left to right and top to bottom. The 
pictures shown are similar to those in Section 11-A for a 
sphere. The system begins with a guess for a. This initial 
guess is given in line 1 in Table 11. As in Section 11-A, 
using this a,  for each s E D the system takes 12( h (s, b, 
a ) )  and puts it at location s in an array, thus generating 
the image shown in Box 1. Boxes 2-5 are images formed 

Fig. 5 .  Error function produced by holding zo and R fixed at the true values 
and varying xo and yo over the ranges - 150 < xo < 200 and - 170 < 
yo < 170. 

Fig. 6. Error function with xo and R held fixed and yo and zo varied over 
the ranges -90 < yo < 120 and -2120 < zo < 1880. 

Fig. 7 .  Parameterization of cylindrical surfaces used with the experiments 
in Section 11-B. 

(a) (b) 
Fig. 8. Two computer generated images of a cylinder taken at different 

locations and orientations. (Section 11-B.) 

in this way for a subset of the sequence of values for a 
occurring in the iterative estimation of aT. The image con- 
structed in this way for the final estimate of aT is shown 
in Box 5.  Box 6 is the image constructed given the true 
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Fig. 9 Imag to right, top 
to bottom. Box k ( k  = 1, 2, . . . , 6 )  is associated with the estimate of 
a in line k of Table I .  

TABLE 11 

surface parameters. This is the same patch as marked in 
Fig. 8(a). Note that the images in Boxes 5 and 6 are al- 
most identical. as they should be. The parameter esti- 

Fig. 10. (a) Plot of the error function as a function of xo and zo centered 
at aT. (b) An enlargement of the above error function in the vicinity of aT.  mates are shown in 'I' The estimates are 'lose 

to the true values. 
The error as a function of xo, z o  in the vicinity of uT is 

shown in Fig. 10. The global minimum is in the first val- 
ley in the figure. The somewhat multimodal error function 
plotted is 400 by 400 units, for a cylinder radius of 128 
units. An enlargement of this function in the vicinity of 
uT is shown in Fig. 10(b). The plot shown is 160 by 160 
units. Notice that the function changes rapidly in the z o  
direction, but much more slowly in the xo direction. Fig. 
1 l(a) is a plot of the error as a function of 8 and 4. The 
extent of the plot is 400 degrees in each direction. Fig. 
1 l(b) is a 40 by 40 degree plot of a portion about u p  Note 
that there is slow variation as a function of 4. The reason 
is that for the geometry of this example, the object surface 
patch involved is roughly parallel to the plane that the 
cylinder axis moves in when 4 is varied but 8 is held fixed. 
Hence, the geometry is much like that of a planar surface 
being moved in a plane parallel to the surface. The error 
function that we are using is insensitive to such motion, 
i.e., to such parameter variation. The error function does 
change rapidly for parameter variation in other directions, 
e.g., the direction of 8 for the specific uT involved here. 

surfaces have some specular (mirror) component. If the 
Lambertian assumption does not apply, then an edge de- 
tector can be run over the image, and pixels located at 
large discontinuities in the picture function are given a 
fixed large value. All other pixels are given value 0. Then 
this resulting array is low-pass filtered to produce what 
we are calling the edge map. This edge map should be a 
function only of the pattern on the object surface, and not 
of the illumination nor of the reflection properties of the 
surface, except for the rare situation of a very highly spec- 
ular surface reflecting an illumination intensity pattern 
having sharp large spatial discontinuities. We treat this 
edge map as a regular image and use it in our algorithm. 
Fig. 12(a) and (b) are obtained by edge detection of Fig. 
8(a) and (b), respectively. They are then low pass filtered 
to obtain the edge maps used in the surface reconstruction 
algorithm. Table I11 lists the estimates of uT at a number 
of iterations in the algorithm, and Fig. 13 is a sequence 
of reconstructions analogous to those in Fig. 9. The min- 
imum of (14) as a function of U is larger when using the 
edge maps rather than the images inFig .  8(a) and  (b). 
The reason is that the edges associated with a point on the 
object surface have different widths in Fig. 8(a) and (b). 

C.  Experiments with a Cylinder when Using Two Edge 
Maps 

The preceding theory is predicted on the assumption of 
a Lambertian surface, i.e.,  that a point on the object sur- 
face appear with the same image intensity no matter what 
the location and orientation of the camera be. Now most 

Hence, even in the absence of sensor noise, this perfor- 
mance functional will not be zero when U = uT. Never- 
theless, the estimation of uT based on the edge map data 
does work reasonably well. 
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TABLE 111 

Fig. 13. Image boxes are numbered 1 through 8, running left to right, top 
to bottom. Box k ( k  = 1, 2, . . . , 7 )  is associated with the estimate of 
a in line k of Table 111. Box 8 is the marked window shown in Fig. 12(a). 

(b) 
Fig. 11. (a) Plot of the error function as a function of 0 and q5 centered at 
ar. (b) An enlargement of the above error function in the vicinity of ar. 

l ! l  Image plane 1 

(a) (b) 
Fig. 12. Edge maps obtained by simple edge detection of Fig. 8(a) and 

(b). (Section II-C.) 

D. Experiments with a Cube Having Planar Surfaces 
Two things of interest are illustrated here. First, image 

1, the image of a cube, is partitioned into small windows, 
and the behavior of the estimates of the surface patches 
seen within these windows is studied. Some windows see 
portions of only one planar surface, and some see portions 
of two, or even three, planar surfaces. Second, the error 
function (14) is unimodal but shallow over a large region 
in the 3-D parameter space when the angle between the 
camera optical axes is small, e.g., 1". And the function 

Image plane 2 I 1 I 
U U' 

Fig. 14. Two pixels in image plane 2 may correspond to one pixel in im- 
age plane 1, as shown here. 

is multimodal over this region but with a narrow valley 
about the true parameter value when the angle between 
the camera optical axes is large. This behavior is ex- 
ploited to amve at a computationally simple search al- 
gorithm for 3-D surface parameter estimation by using a 
sequence of images (four in this example), where the in- 
creasing angles between the optical axis of the first cam- 
era and those of successive ones take the values 1 ', 3', 
10". 

Fig. 15(a) shows image 1, a computer generated image 
of a comer of a cube, partitioned into many small win- 
dows. A plane is specified by the normal vector n, and 
the distance d in the direction of the z axis, from the cen- 
ter of the image window to the planar patch. We specify 
the normal vector by the two angles, y5 and p ,  as shown 
in Fig. 16. Then, the equation for the plane with respect 
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(e) 

Fig. 15. (a) shows image 1, a computer generated image of a comer of a cube, partitioned into many small windows. (b) shows 
image 2 marked with regions corresponding to the windows in image 1, using the estimates based on image 1 and image 2. 
(c) shows image 3 marked with regions corresponding to the windows in image 1, using the estimates based on image 1 and 
image 3. (d) shows image 4 marked with region corresponding to the windows in image 1, using the estimates based on image 
1 and image 4. (e) shows the values of the estimated parameters based on image 1 and image 4. 
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(+)W 
(a) (b) 

Fig. 16. Parameterization of planar surface used in Section 11-E. 

to CRFl , which is the ORF, is 

z = (-tan rl,) ( x  - xo)  + (2;) - ( Y  - Y o )  + (-4 
or 

z = (-tanrl,)x + (z) Y + W') 
where xo and yo are the 2-D coordinates of the center of 
the chosen window and d is a function of xo and yo. The 
distance d' here is the distance along the z axis from the 
origin to the plane. In order to compare the parameter val- 
ues of different surface patches, let the vector a denote 
the three parameters, $, p ,  and d ' .  Since the image of the 
cube is generated by the computer, we know, for exam- 
ple, that the true parameter aT for the top plane of the cube 
is (I) = 0", p = -45", d' = 1638). 

As mentioned, the error function to be minimized, (14), 
is smooth and unimodal over a large region in object pa- 
rameter space when the angle between opitcal axes and 
the difference in locations of the two cameras are small. 
This occurs because for a small baseline, the stereo dis- 
parity changes slowly with change in 3-D surface param- 
eters. However, when the baseline is large, (14) becomes 
multimodal with a narrow valley about aT. Since we have 
a sequence of images available, we can begin with a small 
baseline image pair. We can start the gradient descent vir- 
tuely anywhere in the parameter space. Because of the 
unimodality of (14), the algorithm quickly converges to 
the minimum of the valley. The estimate of aT found by 
the algorithm will not be accurate, because the valley is 
broad. But this estimate will lie within the valley contain- 
ing aT of (14) for a longer baseline geometry, and can 
therefore be used as the starting value for a new estima- 
tion of aT based on image 1 and image 3 .  The process is 
repeated again, etc. Four images, Fig. 15(a)-(d), with the 
second, third, and fourth optical axes making angles 1 ", 
3", 10" with the first optical axis, are used in the exper- 
iment. The initial parameter value used in the estimation 
algorithm is (rl, = 0.0, p = 0.0, d = 2000) for all the 
windows in the image containing the three sides of the 
cube. That is, we start with an initially guessed plane that 
is perpendicular to the optical axis of the first camera po- 
sition, and allow it to tilt, rotate, and shift to the true 
position by searching for the best match in the parameter 
space. As mentioned before, d is the distance from the 
center of the image window to the planar patch in the di- 
rection of the z axis. The first image is partitioned into 

64 square windows, each with 64 x 64 pixels, shown in 
Fig. 15(a). The algorithm is run on the first two images, 
independently for each window in Fig. 15(a). Based on 
the convergent surface parameters, the regions in image 
2 corresponding to the windows in image 1 are drawn in 
Fig. 15(b) for illustration. Windows numbered in white 
are those for which the estimated plane is consistent with 
the two images, i.e., (14) is small, whereas windows 
numbered in black are those for which such consistency 
is absent, i.e., (14) is large. A threshold was arbitrarily 
set at E = 60 for this determination. Here, most of the 
convergent parameter estimates are still quite far from the 
true surface parameter values, but are much closer to the 
true ones than are the initial guesses. Using these conver- 
gent estimates as the initial values, the algorithm is run 
on image 1 and image 3, and then image 1 and image 4. 
The convergent parameters and their corresponding error 
measure are displayed in Fig. 15(e). The corresponding 
regions in image 4 are shown in Fig. 15(d). The results 
are surprisingly good considering that the angle shift be- 
tween the first and the last image is only lo",  and the data 
used for each local estimate are only a small region in 
each image. The ultimate accuracy is obtained by increas- 
ing the baseline, and by optimally using the data in all 
images simultaneously [27]. 

The algorithm in this paper estimates small surface 
patches separately. In a complete system, those patches 
constituting the same primitive surface should be grouped 
together. Segmentation into primitive surfaces and opti- 
mal primitive surface estimation can be achieved using 
maximum likelihood clustering as developed in [26]. 

In the above experiment, the gradient descent method 
requies about ten iterations for each window, and it takes 
less than one second of running time on a Sun-3 com- 
puter. While choosing an alternative surface parameter- 
ization and optimizing the codes can reduce the compu- 
tation time, improvement of the order of more than lo2 
over sequential processing can be achieved with parallel 
processing because the computation required for each 
pixel within the window is independent, and can be run 
in parallel for these several hundred pixels. Therefore, 
this algorithm is well suited to real-time applications 
through use of parallel processors. 

Most of the surface patches seen in the windows in im- 
age 1 are estimated accurately. There are a few windows 
for which this does not happen, primarily because such a 
window sees portions of two or more planar surfaces, thus 
violating the model used which is that each window sees 
only one surface, or because the surface patch seen in the 
window is not seen in the second image. However, these 
mismatches can be detected by checking the size of (14), 
or by using Bayesian decision theory. If a window in im- 
age 1 contains a patch of constant image intensity, then 
the system knows that a good estimate of 3-D surface 
patch using only local data cannot be obtained, and there- 
fore does not process that window data here. 

Initial experiments with real data are illustrated in Fig. 
17(a)-(d). A 242 X 256 pixel CCD camera is mounted 
on a robot arm. The cube shown in dashed lines in Fig. 
17(a) and (d) is the calibration cube with 12'' side, used 
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(d) 

Fig. 17. (a) shows the relative positions between the camera and the object 
(the shaded rectangular box); (b) and (c) are views of the cube in 1st and 
8th camera positions, respectively. (d) shows the computer reconstruc- 
tion of the 3D surfaces using the estimation results. 

for calibrating the camera. It is removed prior to taking 
the image data. The object to be estimated is a rectangular 
box, as shown shaded in Fig. 17(a). The box is slightly 
smaller than the calibration cube. Xeroxed copies of jour- 
nal pages have been pasted on the box to provide the sur- 
face patterns. The camera is moved through a sequence 
of eight positions. This trajectory with respect to the cube 
geometry is shown in Fig. 17(a). The camera is roughly 
1' above the box. Angles between the camera optical axes 
in the 1st and 2nd positions, and the 2nd and 3rd positions 
are each slightly less than 0.5". Angles between subse- 
quent pairs of positions are larger, and the angle between 
the optical axes in the 1st and 8th positions is 14". 

Fig. 17(b) and (c) are views of the cube in 1st and 8th 
camera positions, respectively. The procedure here is 
similar to that for Figs. 15 and 16, except that here we 
are using real data and the pinhole model (perspective 
projection) for the camera. 

Image 1 sees only two surfaces of the cube. The image 
is divided into 40 X 40 pixel windows. Image 8 shows 
the windows that correspond to windows in Image 1 based 
on the algorithm's estimate of the planar surface patch for 

each window. Notice that most correspondences are good. 
Since the window in row 4 column 2 in Image 1 consists 
of essentially constant image intensity, i.e.,  no pattern, 
the associated planar surface estimate will be poor, and 
that can be seen by looking at the estimate of the associ- 
ated region in Image 8.  Also, for some windows in Image 
1, the associated region in the camera 8 image plane will 
be missing some image data, i.e., these windows extend 
beyond the view angle in the 8th camera position. One of 
course expects to have poor 3-D surface estimates for 
these regions. These phenomena can be seen in the esti- 
mated 3-D surface patches in Figs. 17(d). Note also that 
where a window in Image 1 views portions of two sur- 
faces (i.e., on the boundary where two surfaces intersect) 
the estimated surfaces have orientations between those of 
the true surfaces. 

E. Minimization of eD(a) is Maximum Likelihood 
Estimation 

In this section, we show that the a which minimizes 
eD ( a ) ,  (14), is in fact the maximum likelihood estimate 
(mle) of a for the probabilistic model that we now discuss. 
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Let r = (x ,y , z )  *, as before, be the Cartesian coordinates 
of a point in three-dimensional space. A surface is defined 
in general as the set of points whose coordinates are func- 
tions of two independent parameters. Thus, the equations 
ofasurfacecanbewrittenasx = x ( t l , t 2 ) , y  = y ( t l , t z ) ,  
z = z ( t l ,  t z )  where tl and tz are the independent param- 
eters. In other words, any point on the surface is uniquely 
determined by two numbers, tl and t2,  and we shall call t 
= ( t l ,  t 2 )  the curvilinear coordinates of a point on the 
surface. Of course, the choice of the curvilinear coordi- 
nate system is not unique. Fortunately, we do not have to 
compute it since our algorithm for estimating a turns out 
to be independent of the choice of the curvilinear coor- 
dinate system. 

Let us choose an arbitrary curvilinear coordinate sys- 
tem on that surface which is described by a. Let s and U 

be points in image frames 1 and 2 that are views of points 
t and t ‘ ,  respectively, on the object surface. Then there 
are functions ql (  s, a )  and q (  U ,  b, a )  such that 

t = qi(s, a ) ,  

s = q;’ ( t ,  U ) ,  U = q - ’ ( t ’ ,  b, U ) .  (24) 

(The notations q l ( s ,  a )  and q (  U ,  b,  a )  differ because we 
are taking CRFl to be the world coordinate system. ) 

Let p ( t )  denote the brightness of the object surface at 
point t .  We shall call p ( ) the surface pattern. The sur- 
face pattern p ( t )  is seen in image planes 1 and 2 as pl( s )  
and p z ( u ) ,  respectively. Thus, pl(s)  = p ( q l ( s ,  a ) ) ,  and 
p z ( u )  = p ( q ( u ,  b ,  a ) ) .  In practice, what is observed at 
s and U is 

t’ = q ( u ,  b, a ) ,  

II(S) = I11(s) + w d s )  

I d 4  = P 2 ( 4  + W z ( 4  (25) 
where wl(  s ) ,  for all s ,  and w2( U ) ,  for all U ,  are zero mean, 
homogeneous white Gaussian noise processes having 
common variance U’ ,  i.e., they are independent identi- 
cally distributed (i.i.d.) random variables. Thus, pl(s) = 
EIZl(s)] and p 2 ( u )  = E [ Z , ( u ) ]  where E [  . ]  denotes ex- 
pectation of the random variable within the brackets. 

Let Dl and D2 denote regions in image frames 1 and 2, 
respectively, and let Z l  and let Z2 be vectors with compo- 
nents Zl(s), s E D,, and Z2(u), U E D2, respectively. 
Hence, ZI and Z2 represent the picture functions over re- 
gions D, and D, in image frames 1 and 2, respectively. 
Let p denote a vector with components p ( t )  where the t 
are points seen in Dl or D2 or both. Then the joint like- 
lihood of Z I  and Z2 given a,  U ’ ,  and p ( t )  for all t ,  is 

(26) 
where d l  and d2 are the numbers of pixels in D1 and D2, 
respectively. We assume here that the pattern on the ob- 

ject surface is an a priori unknown nonrandom function, 

are a priori unknown nonrandom functions. Hence, the 
joint likelihood (26) depends not only on a,  but also on 
U’ and p ( t )  for all t .  We seek the maximum likelihood 
estimate ci for the unknown a. Unfortunately, this requires 
the simultaneous computation of the maximum likelihood 
estimates ji ( t )  and 8’ for the unknowns portions of p ( t )  
seen in the images, and for U’ .  

The necessity for maximum likelihood estimation of 
p ( t ) ,  for those t seen in Dl or D2 or both, in order to 
realize maximum likelihood estimation of a,  is interest- 
ing. In this paper, p ( t )  is considered to be completely 
arbitrary, but in most applications there is some restric- 
tive model for the surface pattern. Some examples of re- 
stricted models are one or more parameterized curves, a 
polynomial intensity function, a locally homogeneous 
parameterized stochastic process, or some other parame- 
terized model. In all cases, the pattern model parameters 
must be estimated jointly with the estimation of a. Recent 
examples of this in the literature are [28], [29]. In [28], 
contours in the image (i.e., curves across which the image 
intensity changes rapidly) are modeled as polynomial 
curves with a priori unknown coefficients, and the data 
used with these models are not the original images but 
rather the edge maps for two or more images. In [29], 
MRF models are used for textured patterns on locally 
planar 3-D curved surfaces. 

For each surface point t seen in image 1 or image 2, the 
maximum likelihood estimate of p ( t )  given a is the ji ( t )  
that maximizes (26). Let U = h ( s ,  b,  a*).  Then, ji( t )  is 
found to be the following. 

1) If surface point t is seen at s in D1 but not in D2, 
then k ( t )  = bl(s) = Zl(s). 

2) If surface point t is seen at U in D2 but not in D1, 
then b ( t )  = j i z ( u )  = Z2(u). 

3 )  If surface point t is seen in both frames at s E D1 and 
U E D2, respectively, then 

so that p1(s) = p ( q l ( s ,  a ) )  and p d u )  = p ( q ( u ,  b, a ) )  

L 

Let DI2 be a subset of Dl such that 

i.e., the subset of points in D1 in image plane 1 that are 
views of surface points also seen in D2 in image plane 2. 
(Note that DI2 is a function of a.)  Replacing p ( ) in (26) 
by its maximum likelihood estimate b( ) obtained above, 
we have 
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-(dl  +&)I2 
= (2aa2) 

where U = h ( s ,  b ,  z (  s, a ) ) .  Therefore, maximization of 
the joint likelihood function p(ZI, Z2 la, ji, a 2 )  with re- 
spect to a is simply minimization of eD ( a )  in (14) with D 
= D12.  Thus, the & that minimizes e D ( a )  is the maximum 
likelihood estimate of a when the object surface pattern 
p ( * ) is treated as an a priori unknown deterministic func- 
tion. (As can be seen in (27), it is unnecessary to estimate 
a2 in order to estimate a.)  

We run into a problem here due to the quantization of 
the image into pixels. From Fig. 14, we see that the 
marked region of object surface is seen as two pixels cen- 
tered at U and U' in image 2 ,  and one pixel centered at s 
in image 1 .  More generally, a region on the object surface 
may be seen as a pixel at s in set D,  and as pixels at u I ,  
u 2 ,  , U, in set D2.  In that case, (27) is not completely 
correct, and a more exact formulation is given in Section 
11-F. However, in practice the use of (27) for maximum 
likelihood estimation works well, and we use it. 

F. A More Exact Expression f o r p  (II, J2 1 a, p,  a2) 

Suppose a region on the object surface is seen as a pixel 
at s in set D ,  and as pixels at u l ,  u 2 ,  * * , U, in set D2. 
Then the contribution to the exponent in (26) of the data 
at these pixels is 

where p 1 ( s )  = ( l / n )  p 2 ( u i ) .  This relationship be- 
tween pl( s )  and the p2( ui) follows from the assumption 
of Lambertian image formation, i.e., an incremental re- 
gion of the object surface is seen with the same brightness 
at points in both images. Then the mles for pl(s)  and 
p 2 ( u i ) ,  i = 1 ,  * - , n,  are obtained by maximizing (28) 
with respect to pl(s)  and the p 2 ( u i )  subject to the con- 
straint among these variables. The mles are 

and 

1 -  1 
ji2(ui) = 1 2 ( ~ i )  - - I2(h(s ,  by a ) )  + n+l I , ( s )  

(29 )  

n + l  

where 12(h(s ,  b, a ) )  denotes ( l / n )  CY=,  Z2(ui). Upon re- 
placing p ,  ( s )  and the p2(  u i )  in (28) by their mles, (28) 
becomes 

2 
- (1 /2a2)  [w - 72(h(s, b, a ) ) ]  . (30) 

Hence, the contributions of Z,(s) and Z2(ui), i = 1 ,  
* , n,  to the function that must be maximized in order 

to obtain the mle of a,  is (30). Equation (30) is interesting 
for two reasons. The first is its simplicity and that it is 

~ (1 /202)  [Z , (S)  - Z2(u)I2 when n = 1 .  The other rea- 
son is that Zl( s )  contributes only once to the sum that must 
be maximized rather than n times as would be the case if 
- ( 1/2a2)  

Now, suppose a small region on the object surface is 
seen as the pixels at sl, s2,  - , s, in D 1  and the pixel at 
U in D2 where h ( s i ,  b, a )  = U. Then preceding analo- 
gously to the preceding paragraph, we have 

Cy=, [Zl(s) - Z2(u)I2 were used. 

n 1 
j i ( h - ' ( ~ ,  b, a ) )  + - I2(u), f l + l  j i 2 ( 4  = n+l 

jiI(si) = I l ( s i )  - - z l ( h - ' ( ~ ,  b, a ) )  + n+l 12( U 

and 

1 -  1 
n + l  

whereI,(h-'(u, b, a ) )  denotes ( l / n )  
upon replacing p 2 ( u )  and the pl(s i )  by their mles, the 
contribution to the exponent of (26) becomes 

Zl(si). Also 

2 
-(1/2a2) [Ii(h-'(u, b, a ) )  - I2(u)] (31 )  

Using results (30) and (31), we see that a more accurate 
expression for the left side of (27) is 

P(Z1,121a, F ,  a') 

(32)  
where Di2 is the set of points s such that s E D12 and the 
pixel at s maps onto one or more pixels in D2. Similarly, 
D I 2  - Di2 is the set of points s belonging to D I 2  and not 
Di2, and h ( D 1 2  - Di2,  b, a )  is the set of points U such 
that the pixel at U corresponds to pixels at two or more s 
in D 1 2 .  Now maximization of (32) with respect to a is 
minimization of the sum of the two summations in the 
exponent. 

There is still a source of inexactness in the use of (32) 
for representing the left side of (27). It is that one pixel 
in D1 will never map onto an integer number of pixels in 
D2 and vice versa. One result of this is that even if a2  = 
0 and the true value of a is used, the exponent of (32) will 
not be zero. This effect is equivalent to adding colored 
noises (i.e., nonwhite noises) to the two images. The 
standard deviation of the quantization noise at a pixel in 
image k will be pro ortional to the gradient of p k  ( - ) at 
the pixel. When a'is small, this colored noise has a 
greater effect than does the white noise assumed in this 
model. 

In summary, if p (  I,, Z2 I a,  ji, a2)  is to be maximized 
with respect to a,  (32) should be used. However, the ap- 
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proximation (27) is computationally simpler and works 
well. 

111. CRAMER-RAO LOWER BOUNDS ON THE ERROR 
COVARIANCE FOR THE ESTIMATES OF SURFACE 

PARAMETERS a 
In this section, we derive lower bounds for the covari- 

ance matrices for the a priori unknown parameters of the 
3-D objects and the object surface patterns for those sit- 
uations where the parameters to be estimated are treated 
as unknown constants or as random variables. Note that 
these are fundamental bounds that depend on the raw im- 
age data and any a priori information concerning camera 
and object surface geometry. No matter what object pa- 
rameter estimation algorithms are used, the resulting ob- 
ject parameter estimation-errors can never be smaller than 
these bounds. Furthermore, if the image data windows 
used contain many pixels and the object surfaces being 
estimated are smooth, then maximum likelihood parame- 
ter estimators will have error covariance matrices given 
approximately by the C.R. Bound. These bounds require 
computing the Fisher Information Matrix [ 131. We com- 
pute this matrix and the error covariance bound. The final 
results are given in (37) and (41). 

Let aT = ( pT, u2 ,  a T ) .  Here, p T  is a vector having 
components p ( t )  where t is a point in the 2-D parametric 
space on which the object surface pattern is specified as 
discussed in Section 11-E and (24). The points t in ques- 
tion are those specifying 3-D surface points seen in set Dl 
or set D2 or both, where D, and D2 are arbitrary sets in 
the image planes in CRFl and CRF2, respectively. As 
discussed in Section 11-E and (24), through q r ' ( t ,  a )  and 
q - l ( t ,  b ,  a )  point t maps to point s E D~ in image 1 or U 
E D2 in image 2, or both. Then the Fisher Information 
Matrix is3 

F =  -E 

where aT is the true value of a,  i3 In p (  a ,  - 1 aT)/i3aT is 
a row gradient vector evaluated at a = a T ,  and a2 In p ( , 
- 1 aT)/(i3aT)' is a 2nd partial derivative matrix evalu- 
ated at a = u p  Let A be the error covariance matrix for 
any unbiased estimator for a based on data in Dl and D2. 
Then the Cramer-Rao bound is 

F-' 5 A (33a) 
where by the inequality we mean that A - F- '  is non- 
negative definite. This implies that if v is the parameter 
estimation error vector, then 

r 1 

trace F-'  5 E [ u ~ u ]  = E c (u i )  = c E[(vi,']. 1. 2l ' 

3The following notation is used. For any function w(a), by aw(a,)/aa, 
we mean dw(a)/aal,=,, 

Furthermore, 

iith element of F-' 5 E [  ( ui)'] ,  

where vi is the ith element of U. Similar results apply when 
U is a biased estimate of aT [ 131. Let F;' denote the di- 
agonal subblock of F-' that applies to a alone. 

We define p,( * ) to be the image mean value function 
in CRFn. We now explore in detail the properties of the 
Fisher information matrix, (33). Let U and s be related by 
U = h ( s ,  b,  z(s,  a T ) ) .  We assume that t = q l ( s ,  a) and 
t = q ( u ,  b, a) are 1 : 1 functions on Dl and D2, respec- 
tively. If they are not 1 : 1, then two or more points on the 
object surface project onto a single pixel in image plane 
1, or onto a single pixel in image plane 2 ,  or this can 
happen with both image planes. In such a case, we use 
only one of these surface points in the following devel- 
opment, and that is the surface point that projects closest 
to the center of the pixel onto which these surface points 
project. From (24) and using the reasoning leading to (26), 
we have 

I f s  and U see the same point, specified by t, on the object 
surface, then p l ( s )  = p ( t )  = p 2 ( u ) .  

The exact meaning of (26a) requires some explanation. 
As explained in Section 11-E, the pixel at s in Dl may see 
that portion of object surface seen by n pixels ul ,  u2, 

* * , U,, in D2. This dependence of the value of pI( s )  
on the values of p2( ) and p ( ) at a few values of their 
arguments poses a complication when trying to find a sim- 
ple form for the dependence of F-' in (33a) on camera 
geometry, object surface parameterization, and object re- 
flectivity coefficient pattern. (In theory, F-' in (33a) can 
be computed for the sensor model described.) To arrive 
at a sensor model that is easier to work with, we assume 
that the noiseless image gray level at pixel s in D1 is due 
to the sensor illumination at s, the center of the pixel, 

7 n7 
for which p2( ui) = pI( s),  which is the ui closest to h (s ,  
b, z(s ,  u T ) ) .  Similarly, there is only one p ( t i )  for which 
p ( t i )  = pl ( s ) ,  namely, the ti, i = 1, * , n', that is 
closest to 41(s, a). The other p 2 ( u i )  and p ( t i )  are not 
constrained to being the same as any of the p l ( s ' ) ,  s' E 
D1 . A similar statement applies when one pixel in D2 sees 
a region of object surface seen by n pixels in D,. This is 
the model that we now use in this section and Sections 
111-A, B, and C. (A different model may give slightly dif- 
ferent results .) 

only. Then there is only one of the u[s, i = 1, * 



CERNUSCHI-FRIAS et al.: ESTIMATING AND RECOGNIZING PARAMETERIZED 3-D OBJECTS 1043 

From (24), we have 

-- apl(s) - adq1(s7 4 )  - - 

ap.,(U) - a 4 4 ( s 7  by 4 

at 

aq1(s7 a )  

aa aa at T i r = q i ( s , a )  

I .  t=q(u.b.a) (34)  

-- 
aa aa 

-- ap(t) a o ,  b, a )  - 

Note, in the above, aq,( s, a ) / a a  is a 2 X K matrix where 
K is the number of components in a. Similarly for aq ( U ,  

Define D12 as the set of s such that s E D1 and s belongs 
to one of the following sets: the pixel at s maps onto one 
or more pixels in D2; or two or more pixels in D1 map 
onto the pixel at U in D2, and, of these pixel centers, s is 
the one for which h ( s ,  b,  z ( s ,  a ) )  is the closest to U. 

From (26a) and (33 ) ,  following some substantial work, 
we arrive at (details are in Appendix Bl): 

b, 4 / a a . -  

1 
11’. (35) 

ap(ql(s, - ap(q(U, b, 
F i l  = $[ seD12 [ a a T  aal- 

ap(qI(s, - ap(q(U, b 2 3  [ a a T  a a T  

Note that due to cancellations, only the subset D12 of Di 
contributes to the final expression for the bound (35). This 
is as expected since data points cannot contribute to the 
estimation of a unless there is a point in each image that 
is due to the same point on the object surface. The right 
side of ( 3 9 ,  the Cramer-Rao Bound for the estimation 
error for the parameter vector aT, is interesting. Note that 
the Cramer-Rao (C.R.) Bound is inversely dependent on 
th differences in the gradient vectors ap l (s ) /aaT = 
ap(qi(s, UT))/% and a ~ z ( u ) / a a T  = ap(q(U9 by 
aT))/au,, i .e.,  the gradients with respect to a of the im- 
age mean values taken by cameras 1 and 2, respectively. 
Equivalently, upon using (34), this difference can be writ- 
ten as 

aPl(s) +2( 4 [a.---] a a T  

I. (36) - --.I ap(t) aql(s, - aq(U, b, 
at a a T  a a T  

Hence, in order to have a small C.R. bound, one wants 
the difference in the rate of change o f t  with respect to aT 
in CRFl and CRF2 to be as large as possible, i .e.,  one 
wants the columns of the matrix in the brackets in (36) to 
be as large as possible. 

A, Cramer-Rao Lower Bounds when Using an 
Alternative Pattern Parameterization 

It is often convenient to take the a priori unknown pat- 
tern to be pI( s ) ,  the mean value function for image 1, or 

p 2 (  U )  rather than p (t) .  There are two reasons for this. 
First, since the data sets that we are dealing with are ZI 
and Z2, the easiest pattern parameterization to work with 
is often the mean value function associated with one of 
these sets. Second, though in theory we can always spec- 
ify an object surface pattern as a 2-D parameterization on 
the object surface, in practice this may be messy. From a 
physical point of view there is a slight difference between 
assuming the true fixed pattern is p ( t )  and assuming it is 
pI(s) .  If one lets a vary, then in the first case the mean 
value function for the first image varies at point s because 
it is given by p ( q l ( s ,  a ) ) ,  i.e., because the object surface 
moves. However, in the second case pi ( s )  is fixed and 
does not vary with a,  but the pattern at a point on the 
object surface will vary as a vanes. In general, if pl ( s )  
is taken to be the a priori unknown pattern parameters, 
then some of the elements in the resulting Fisher Infor- 
mation Matrix will differ from those in (b10). However, 
an interesting result easily proven using the types of iden- 
tities developed in Appendix B2, is that the C.R. Bound 
for the a vector will be the same whether the unknown 
pattern vector is taken to be pl(s) ,  or p 2 ( u ) ,  or p ( t ) .  
Since the theory is a little easier to interpret for pl( s )  [or 
p 2 (  U ) ]  as the unknown pattern parameters, the remainder 
of our development of the C.R. Bound is for this case. 

Hence, let pl( s) ,  s E D1, be the a priori unknown pat- 
tern parameters. Then in Appendix B2 it is argued that 
the C.R. Bound for aT,  F;l7 is given by 

(37) 

where D12 is defined before (35). (See [17] for details.) 
Note that the true unknown pattern parameters are as- 
sumed to be the pl(s)  for all s, but it is convenient to 
express the bound in terms of p 2 ( u )  where p 2 ( h ( s ,  b,  

To explore (37) further, observe that it can be ex- 
= pl(s). 

pressed as 

[(y)T(y)] 

From (16), 
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so that 

Then (38) is 

- 1  

. (y c12)(y)]] (41) 

Expressions for az(s, a ) / a a  are derived and given in 
Section 11-A for the sphere and Appendixes C, D, and E 
for the plane, cylinder, and general quadric, respectively. 
By assuming a deterministic or a stochastic model for 
p , ( s ) ,  it is sometimes possible to obtain a closed form 
expression for (41). An example of this is given in Section 

B. Interpretation of the Cramer-Rao Bound 
The C.R. Bound (41) has a very simple, physically 

meaningful interpretation. First, observe that the depen- 
dence of the bound on each of camera geometry, object 
surface pattern, and object surface shape is immediately 
seen. Specifically, the two-component vector c12 is the 
projection in CRF 2 of a unit vector in CRFl at the origin 
in the direction of the z-axis. It represents the influence 
of the two-camera geometry on the Bound. The vector 
dp2(u)/du is the gradient of the mean value of image 2 
intensity function. It represents the contribution of the ob- 
ject surface pattern to the bound. Finally, the vector dz (s ,  
a ) / a a  is the contribution of the object surface shape to 
the Bound. It represents the dependence of object surface 
shape on the parameter vector a. 

We develop the interpretation of (41) and (38) further. 
Note that because of the use of the orthographic projec- 
tion, cI2  gives the direction of all epipolar lines in CRF2. 
(By an epipolar line we mean the following. Each point 
in image 1 is the image of a point on a 3-D surface. The 
ray that goes through a 3-D surface point and its image 
point in image 1 is seen as the so-called epipolar line in 
the image plane of camera 2. Hence, the point in image 
2 that is the image of the 3-D surface point, must lie on 
this epipolar line.) The magnitude of c12 varies as the sine 
of the angle between the optical axes of the two cameras. 
We see that this will be very small for optical axes that 
are almost parallel, and is a maximum for optical axes that 
are orthogonal. 

The partial derivative az (s ,  a )  /dui is the rate of change 
with respect to parameter ai of the z component of the 
3-D surface point (s z )  in CRFl . (It is the rate of change 
with respect to ai of distance to the object surface at point 
( s T ,  z ) . )  Hence I c12dz(s, a) /da i  1 is the magnitude of a 

111-D . 

directional derivative-the rate of change with respect to 
ai of the image in the camera2 image plane of the point at 
( s T ,  z ( s ,  a ) )  on the 3-D object surface. 

Since dp2(u) /au  is the gradient of image 2 intensity, 
we see that [ap2(u)/au]c , , [az(s ,  a ) / a a i ]  is the rate of 
change with respect to ai of the intensity in image 2 in the 
direction of the vector cI2 at point U = h ( s ,  b, z(s, a ) ) .  
Because of the inverse operation in (41), we make the 
qualitative statement that the larger these directional de- 
rivatives are, the smaller will be the covariance matrix for 
the estimation error for aT. 

From the preceding, it is clear that maximum parameter 
estimation accuracy is obtained for the following condi- 
tions. The mean value function, p2( U) ,  of the image of 
the object surface pattern should be rapidly varying so 
that dp2(u)/au is large. The angles between the optical 
axes should be large (90" is the best) in order that c12 be 
large, and the angle between the image intensity gradient 
and the direction of the epipolar lines should be small. 
Then cI2[ ap2( u ) / ~ u ]  will be large. Last, it is desirable 
that the gradients az (s ,  aT)  /aaT be large and that their 
directions be distributed over the entire space as s varies 
throughout 6,, . In general, these conditions are increas- 
ingly better achieved with increasing DI2, i .e.,  increasing 
patch size. If there is flexibility to choose the direction for 
at least one camera axis during the surface estimation 
procedure, the axis should be chosen such that 
[ ap2( u ) / ~ u ]  cI2 is large for most U in h(DI2,  b, a ) .  The 
choice can be made more specific depending on the situ- 
ation encountered. 

C. Another Interpretation Associated with the Fisher 
Information Matrix 

Recall that 

Assume that the additive noise is 0, so that ZI( s )  = pl( s )  
and 12(u)  = p2(u) .  Expanding the resulting function 
ehI2(a )  about the point aT in a Taylor series up through 
quadric terms gives us 
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Hence, 

Recall from (37) that the inverse of (43) multiplied by 
U$ is the C.R. Bound for the achievable error in estimat- 
ing aT. From (44), we see that (43) also determines 
ehl2( a ) .  The function ebI2( a )  is narrow if and only if (43) 
is large. Hence, we see that the C.R. Bound is small if 
and only if ebI2 (a )  is a narrow function. 

D. An Example of a Numerical Computation of the 
Cramer-Rao Bound 

ple for ( 4 1 ) .  Let the 3-D surface be the plane 
Some additional insight is .provided by a simple exam- 

z = Po + PIS1 + P 2 S 2  

p 2 ( 4  = Yo + Y l U l  + Y 2 U 2  

and let p2( U )  be linear, 

where ( sl, s 2 )  = U .  (This choice for 
p 2 ( u )  means that pl ( s )  will also be linear.) Then 
dp2( u ) / ~ u  = (y l ,  y2), so that [ ap2( u ) / ~ u ]  cI2 is a con- 
stant independent of U ,  or, equivalently, of s where U = 
h ( s ,  b ,  z ( s ,  a T ) ) ;  it can therefore be taken out of the 
summation in (41). Since dz(s, aT)/daT = ( 1 ,  sl, s 2 ) ,  
we see that (41) is 

= s and ( u l ,  u 2 )  

the variance of the error in estimating plane orientation 
decreases as the square of this rate, because the further 
away the image pixels are from the patch center, the more 
they contribute to the plane orientation estimation accu- 
racy. We feel that the greatest value of the expressions 
for the C.R. Bound is a feeling for how the parameter 
estimation error depends on the object surface pattern and 
the camera and object geometry. However, it may also 
be of interest to look at numerical examples. Hence, 
consider 1 d p 2 ( u ) / a u (  = 3, U; = 4, angle between 
(ap2(~) /au) 'and~12equa145",  and IcI21 = 0.17 (cor- 
responding to an angle of 10" between the optical axes of 
the two cameras ) . Note that uT is due to the additive noise 
in our models, but in practice it can account for quanti- 
zation and other numerical errors in the entire measure- 
ment system. Then for N = 16 pixels, we have 6.5 I 
Var p o ,  and 0.043 I Var p 1  and Var p 2 .  Hence, the lower 
bounds for the standard deviations of the slopes of the 
plane in the vertical or the horizontal directions are 0.21 .  

IV. CONCLUSIONS 
A parametric modeling and statistical estimation ap- 

proach has been proposed and simulations shown for es- 
timating 3-D object surfaces from images taken by Cali- 
brated cameras in two positions. The parameter estimation 
suggested is gradient descent, though other search strat- 
egies are also possible. Processing image data in blocks 
(windows) is central to our approach. The estimation is 
estimation of patches of 3-D surface by searching in pa- 
rameter space to simultaneously determine and use the ap- 

r N 2  

1 p - 1 ) N 2  

20; 1 [y c12T I ( N  - 1 ) N 2  - 1 N - 
3 

L L 

where we have used CY=-: i = ( 1 / 2 ) ( N  - l ) N  and 
( 1 / 3 ) ( N  - 1 ) ( N  - ( 1 / 2 ) ) N .  Uponcarry- 

ing out the matrix inversion and then keeping only the 
largest power of N ,  we have the approximation 

N-1 . 2  = z 

r 

' I  JL-  .6N-3 0 1 2 ~ - ~ ]  

( 4 1 4  
for the C.R. Bound for E [ ( d  - a T ) ( d  - u ~ ) ~ ] .  This 
becomes the exact bound as N becomes large. The diag- 
onal elements of (41a), starting with the top, are the 
variances of the errors in estimating po, p l ,  and p 2 ,  re- 
spectively. We see that the variance of p o ,  the position of 
the 3-D plane, is inversely proportion to image patch size, 
the number of pixels used in the stereo estimation. But 
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1 
2 
- ( N  - 1)N2 I I  

1 1 
2 4 
- ( N -  1 ) N 2  - ( N -  ITN2 

)2N2 
1 1 
3 2 
- N - -  ( N -  

propriate pair of image regions, one from each image, and 
to use these for estimating a 3-D surface patch. Though 
the choice of performance functional was motivated by 
consideration of engineering reasonableness, we derive 
the expression for the joint likelihood of the two images, 
and show that the algorithm is a maximum likelihood pa- 
rameter estimator, and thus enjoys the desirable estima- 
tion accuracy properties of maximum likelihood esti- 
mators. A very important concept arising in the maximum 
likelihood estimation of 3-D surfaces is that the patterns 
on the 3-D surfaces must also be modeled and estimated. 
We do this for the case of completely arbitrary patterns, 
in this paper, and deal with restricted pattern classes else- 
where [ 2 8 ] .  Finally, Cramer-Rao Lower Bounds are de- 
rived for the covariance matrices for the errors in esti- 
mating the a priori unknown object surface shape 
parameters. No surface reconstruction algorithm can be 
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more accurate than these bounds, but the accuracy of our 
maximum likelihood estimator approximates these bounds 
as the size of the image patches used becomes large. 

Following are a few points that may answer some ques- 
tions occurring to a reader. 

1) In Appendix A, we derive the orthographic projec- 
tion approximation to the more exact perspective projec- 
tion. It can be made to be arbitrarily accurate by applying 
it to suitably small 3-D regions-a different approxima- 
tion for each such region. Our primary purpose in using 
this approximation is that a C.R. Bound for the perspec- 
tive projection would probably be uninterpretable, and the 
C.R. Bound based on the orthographic projection model 
probably captures the behavior of the C.R. Bound based 
on the perspective projection very well. 

2) Though the surface estimation algorithm in this pa- 
per uses the orthographic projection model, with trivial 
changes the approach applies to the perspective projection 
model. However, with the perspective projection, the 
transformation from image 1 to image 2 is such that there 
is no longer a computational advantage to computing the 
gradient (1 5 )  directly. Rather, we compute the gradient 
by computing directional derivatives by evaluating (14) at 
the appropriate points. The estimation accuracy is good, 
but the required computation becomes a few times larger 
than is the computation based on the orthographic projec- 
tion. The perspective projection model is used in the sur- 
face reconstruction experiment in Fig. 17 where the data 
used are a sequence of real images taken by a CCD cam- 
era mounted on a moving robot arm. 

3) A major use of the C.R. Bound is an understanding 
of the relative importance of various factors on accuracy. 
The way image gradient, camera geometry, and 3-D sur- 
face parameter dependence enter (37) appears to be very 
fundamental and should prove useful even when the true 
model differs somewhat from the assumed one. However, 
it is possible to derive exact C.R. Bounds for other 
models. For example, if the images have low noise, im- 
age quantization into pixels can introduce a sizable noise. 
If at a point the image intensity varies by Q units over an 
interval equal to the extent of a pixel, then the image 
quantized into pixels can have an equivalent noise fluc- 
tuation of Q / 2  at the pixel in question. This noise is im- 
age dependent and is usually correlated. A C.R. Bound 
can be derived for this case. 

4) Accurate 3-D surface reconstruction requires the use 
of dependency among points within sizable regions of the 
surface. An effective way of imposing such dependence 
is by using prior knowledge of 3-D surface structure. 
Since planes, spheres, and cylinders are effective in effi- 
ciently modeling most man-made objects [30], we have 
emphasized them. The more a priori information one uses 
in surface reconstruction (or for that matter in any infer- 
encing problem), the more accurate will be the result. And 
maximum accuracy is obtained by using all of this a priori 
information at the time of processing the raw data. 

5 )  We do not have the entire system sufficiently well 
calibrated in order to determine the exact surface recon- 
struction accuracy based on real data. One reason for run- 

ning the algorithm on the semi-artificial data used in the 
experiments in the paper, is that we can report this accu- 
racy exactly. The images used in our experiments had 
low sensing noise, so the existing noise was largely col- 
ored image-dependent noise due to pixel quantization. As 
seen, our algorithms work well in the presence of this 
noise. Moreover, recent experiments (e.g., Fig. 17) in- 
dicate that the reconstruction works very well with real 
data too. From these experimental results, we feel that 
this algorithm is robust to deviations from the assumed 
model that may be encountered. 

6) Our performance functionals can be multimodal. 
Some feeling for the width of the main lobe is given by 
the curves shown for the experiments reported on in the 
paper. The true value of the surface parameter vector U, 
is always at the global minimum of the performance func- 
tional (14) if the image noise is 0. If the noise is nonzero, 
the U at the global minimum of (14) converges to U,, un- 
der weak conditions, as the size of the image patches used 
becomes large. In statistics jargon, the mle is consistent. 
However, the performance functional can be almost flat 
in the vicinity of its global minimum. The shape of the 
functional there depends on the image intensity, surface 
geometry, and camera positions. The interpretation in 
Sections 111-B and 111-C of the C.R. Bound provides in- 
sight into what determines how flat or steep the perfor- 
mance functional is. One of the factors that greatly affects 
the width of the main valley of the performance functional 
is the angle between the optical axes of the two cameras. 
The width decreases with increasing angle. This property 
is exploited to provide our computationally simple algo- 
rithm of Section 11-D. We begin with a small angle, so 
that we can use an arbitrary first guess for the surface pa- 
rameter vector, and then minimize the unimodal perfor- 
mance function. The resulting estimate of U, is highly in- 
accurate, but it is accurate enough to lie in the global 
valley of the performance functional resulting from use of 
a larger angle. Then, starting with the aT estimate found, 
uT is reestimated with this larger angle. This approach is 
repeated a few times until an accurate estimate of uT is 
obtained. 

7) Using our approach, we can do maximum likelihood 
pointwise estimation of 3-D surfces, but we do it by as- 
suming a surface patch model. Then the mle of a point on 
the surface patch is the point on the estimated surface 
patch that corresponds to the image of the point. If the 
image point is s in image 1, then the estimated 3-D point 
is ( s T ,  z ) ~  where z is the value satisfying g(z, s, U )  = 0. 
Since mle’s have minimum variance as data patch size 
becomes large under fairly general conditions, our esti- 
mators should pretty much have maximum accuracy. If 
the object surface has special modelable pattern structure 
such as contours, across which the patterns are discontin- 
uous and along which they are smooth, then greatest ac- 
curacy is achieved by using this information. We do this 
in [ 2 8 ] .  

8 )  Insights into appropriate image and surface patch 
sizes to use can be provided in terms of image noise, sur- 
face curvature, etc., but this would require some lengthy 
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development. In brief, if the image noise is white, then 
by using concepts and techniques such as those in [12], 
[26], it is possible to determine approximately the error 
covariance matix for estimating the parameter vector for 
a surface patch, and through a combination of analysis 
and experimentation, it is possible to estimate the proba- 
bility of correctly recognizing which of a number of 3-D 
surface models is correct for a certain surface patch. The 
C.R. Bound (41a) also provides insights on estimation ac- 
curacy. On a more informal level, an image patch size 
should be chosen to be large when the standard deviation 
of noise (either from measurement or from quantization) 
is large. The more parameters that must be estimated, for 
a surface patch, the larger should be the data patches that 
are used. For example, in the presence of modest noise, 
small planar or spherical patches can be estimated that fit 
the sphere surface well, but the estimate of the sphere 
radius and center may be greatly in error. In order to es- 
timate these parameters well, it may be necessary to use 
a patch covering one eighth or more of the sphere surface. 
An unconstrained quadric patch has even more parameters 
to be estimated. However, accurate estimates of curvature 
can be obtained with small patches if a sequence of im- 
ages is used [27]. 

9) We see two ways for estimating large complex sur- 
faces from small patches. One approach is to model a sur- 
face as a stochastic process. This is done in [3] where the 
model is a continuous surface of planar patches with the 
set of parameter vector values, one vector value for each 
patch, modeled as a Markov random field (MRF). This 
MRF provides the a priori distribution (knowledge), for 
the global surface, and indirectly contains information 
such as surface curvature, blob sizes, etc. There it is 
shown how the estimators of the present paper fit into the 
more global scheme. The other approach is to use the 
maximum likelihood clustering approach of [26] to first 
estimate small surface patches, and then cluster these into 
large regions with each large region associated with a sin- 
gle surface model, e.g., with a single smooth surface free 
of gradient discontinuities. 

As we point out, because of the probabilistic formula- 
tion of the problem, the powerful machinery of Bayesian 
inference can be brought to bear in our approach. In- 
cluded here is approximately Bayesian recognition of the 
object surface shape class associated with the block of 
data under consideration. That is, recognition of which of 
a sphere, a cylinder, a plane, some other parameterized 
surface, or two or more surfaces are associated with the 
data block. (The asymptotic Bayesian recognition meth- 
ods in [12, Section VI are directly applicable here.) Also, 
the approaches in the preceding point, 9, are Bayesian. 

APPENDIX A 
ORTHOGRAPHIC APPROXIMATION TO PINHOLE CAMERA 

MODEL 

Suppose the ORF is chosen to be the same as CRF1, 
and the 2-D image coordinates are in the same units as 
are the 3-D coordinates. Let P be an arbitrary surface point 

seen in image 1. Let r = ( x  y z )  be the 3-D coordinates 
of P with respect to the ORF, and s = (s, s y ) T  be its 
corresponding 2-D image coordinates in image 1. Then, 
upon using the homogeneous coordinate transformation, 

That is, 

where f is the camera focal length. Let ro = (xo  yo z ~ ) ~  
denote a 3-D point seen in the image. A Taylor series 
expansion about ro is 

s = q ( r )  = q(ro)  + - all (ro)  ( r  - ro) + * ar 

= [-] 
f - 2 0  

x - xo 

* Y - Y o  [ -  z - 20-  

+ . . .  

Therefore, we can approximate s as a linear function of 
x ,  y ,  z 

This approximation is quite accurate for Iz - z o )  / 1 f - 
zo 1 much smaller than 1. The optical axis of the camera 
is the ray x = y = 0. Suppose ( x ,  y ,  z )  is a point on an 
object surface, and let xo, yo be the center of an image 
window. 

If the object-to-camera distance is at least a few focal 
lengths, i.e.,  1 z o / f  1 >> 1; the object diameter to object- 
to-camera distance is small, i.e., I z - zo( / 1 f - zo 1 << 
1 suchthat Ixo(z - z o l / l f  - zo) I << 1x1 and ( y o ( z  - zd/ 
(f - z o )  I << I y I ; then (a2) is a good approximation to 
(al)  within the window. 

f f 
J J 

s, = - x s y = -  Y .  (a2) f -  20 f -  zo 
If this s, and this sy are normalized by dividing by the 
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known scale factor f/( f - zo), the resulting coordinates 
of the image point are the 3-D point coordinates x and y, 
respectively. This is the orthographic imaging model used 
in the body of the paper. 

APPENDIX B1 
DERIVATION OF THE C.R. BOUND 

We briefly derive the C.R. Bound for aT. We begin with 
(26a). 

+ [ 1 2 ( 4  - P ( t ) l 6 2 W j  (b l )  
where sk ( t )  takes values 1 or 0 according to whether or 
not the point t is seen at a pixel in Dk.  Hence, s 1 ( t )  = 1 
for all t = q l ( s ,  a ) ,  s E D1, and & ( t )  = 1 for all t such 
that t = q ( u ,  b,  a), U E D 2 .  Furthermore, suppose the 
pixel at s in D1 maps onto two or more pixels centered at 
points U in D2. Then we will consider that pixel center U 
that is closest to h (s ,  b, a )  to be such that q,( s, a )  = t 
= q (  U, b, a ) ,  and for this t ,  sl ( t )  = h 2 ( t )  = 1. A similar 
statement applies if the pixel at U in D2 maps onto two or 
more pixels centered at s in Dl. From (bl) ,  

W) = [ U s )  s l ( t >  + 1 2 ( 4  s , ( t > ] / [ s 1 ( 4  + 62( t> l .  

(b2) 
From (b2) it is seen that F ( t )  is an unbiased estimate. 

Continuing, we obtain 

a In P(ll,  12 I a> 
aa2 

Hence, 

where b1(s) = b ( q l ( s ,  a ) )  and M u )  = f i ( q ( u ,  b, a ) ) .  
From (b3), we see that ij2 is asymptotically unbiased as 
D1 and D2 become large if and only if D1 = D,, where 
D12 is defined in Section 11-E. 

a P l b >  
aa [W - P l ( 4 1  7 

As seen from Section 11, there is not a simple explicit 
expression for B. Rather, ii must be obtained numerically 
by minimizing (14), or equivalently, (27). However, it is 
easy to show that B is unbiased for 3-D planar surfaces, 
and is asymptotically unbiased for more general but rea- 
sonably smooth 3-D surfaces. 

The negative of the expectation of the second deriva- 
tives is now computed. 

if t' # t;  

= [ s 1 ( t >  + s 2 ( t > ]  i f t '  = t .  

If d I 2  = dl = d2,  (b6) becomes d , ~ - ~ .  

1 -E [ a2 In ';,(.:;,2 I aT> 

7 

T 

(b7) 
There are cross terms. These are seen by direct com- 

putation to be 

(b9)  
Finally, note that - E [ a 2  1np(Zl, z2 1 a T ) / a P T ( t )  a& = 

From the preceding, the Fisher Information Matrix has 
0. 

the form 
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where L is the number of those pixels on the object sur- 
face that are seen in at least one of the D1 and D2,  

and for a having K components, 

and H has ith row 

Our primary interest is in finding a lower bound for the 
error covariance matrix for estimating aT. We make use 
of the following known matrix inversion result 

Summing s over K 1 ( D 2 ,  b, a T )  in the last summation in 
(b12) is equivalent to summing U over D2. Equation (b12) 
simplifies to 

G =  RT, Q = e ,  
so that 

there results 

F;' = (Q  - GS-'R)-I 

Note that due to cancellations, only the subset D12 of D1 
contributes to the final expression for the C.R. Bound, 
(b12a). [D12 is defined preceding (35).] This is as ex- 
pected since data points cannot contribute to the estima- 
tion of a unless there is a point in each image that is due 
to the same point on the object surface. The right side of 
(b12a), the Cramer-Rao Bound for the estimation error for 
the parameter vector aT,  is interesting and is interpreted 
in Section 111-C. 
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We emphasize that the surface pattern model used here 
is that for which the reflectance at each surface point is 
an a priori unknown arbitrary parameter. For this model, 
the only data that contributes to surface reconstruction are 
pairs of points, one point in each image where each point 
in a pair is an image of the same point on the object sur- 
face. If other surface pattern models are used, such as 
contour polynomial models [28], or Markov random field 
texture models [29], then even if a surface point is seen 
in only one image, the data point does contribute to the 
3-D surface reconstruction. 

APPENDIX B2 
Proceeding similarly to the derivation of (b12a), in this 

appendix the C.R. Bound for aT is found in terms of p2( U )  
when pl(s )  is assumed to be the true a priori unknown 
pattern parameters. 

We introduce a few identities that are useful for manip- 
ulating the expressions that must be dealt with in these 
multi-image problems. First, how are the spatial gradients 
of two images related? Since p ( q ( u ,  b, a ) )  = p z ( u )  
where t = q ( u ,  b, a ) ,  it follows that 

(b13) 
-=-  a p z w  aq(u, b, 4 

au at au . 

aP.,(u> - +l(S)  ah-I(u, b? a )  

Similarly, since p l ( h - ' ( u ,  b ,  a ) )  = p 2 ( u )  where s = 
h- ' (u ,  b,  a ) ,  it follows that 

(b14) au as au . 
Similar expressions exist when q l ( s ,  a )  and h ( s ,  b,  a )  
are used in place of q (  U ,  b, a )  and h-'( U, b, a ) ,  respec- 
tively. Finally, since h- ' (u ,  b, a )  = q L 1 ( q ( u ,  b, a ) ,  a ) ,  
and t = q l ( q ; l ( t ,  a ) ,  a ) ,  it follows that 

a h - b ,  b, U )  - - aq;I(t) a m ,  b, U )  + aq-'(t, U )  

aa at aa aa 

W 5 )  
and 

aq,(s, 4 aq;'(t, 4 aql(s, a )  at 
aa as aa aa ' 

- o = -  +- _ -  

respectively. 
We begin with (26). Here, the first summation is not a 

function of a ,  only the second summation is. Because p2 
is related to pl through p Z ( h ( s ,  b, a T ) )  = pl ( s ) ,  and the 
pl( s )  are limited to s E D,, it follows that the only values 
of s and u that contribute to the C.R. Bound are s E D,, 
and u E h ( D l 2 ,  b,  a T )  where is defined preceding 
(35). Proceeding as for (b7), we find 

Note that when computing dpz( u)/aaT, the dependence 
of p z ( u )  on aT i s  through u = h ( s ,  b,  a T ) ,  where s E D , , .  
Also, we have used the fact that apl(s)/daT = 0 for all 
s since the pl( s )  are assumed to be the true pattern param- 
eters. Furthermore, -E[a2 lnp(Z,,  Z z l  aT)/aaTap,l  is a 
matrix having row 

(b18) 
apI(h-I(u, b, a , ) )  

OF2 
a a T  

associated with point s = h-'( U, b, aT) .  Upon using this 
and (b17) in equations similar to (b10) and (bl l ) ,  we find 

The explicit dependence on s is exhibited in 

If we wish, from (b2), apz(h(s,  b,  aT)) /aaT can be ex- 
pressed in terms of pl ( s )  by (ap , ( s ) /ds ) (ah(s ,  b, 
U T )  /as ) ( ah  ( s, b ,  U T )  /aaT>. 

APPENDIX C 
THE PLANE 

We derive the expression for the vector az/aa for a 
plane. Note that there are a number of different sets of 
parameters that can be used for representing a plane (or a 
cylinder, or a more general surface). We use the canonical 
parameterization in this section. We use the equation 

0 = g(x, y ,  Z )  = Pix + & y  + P ~ z  - d ( c l )  

subject to the constraint 

0 = f ( x ,  y ,  z) = p: + p: + p: - 1. (c l .1 )  

Note, 1 d 1 is the distance from the plane to the origin in 
this representation. It is assumed that the plane is in gen- 
eral position, because if, e.g., p3 = 0, then the plane nor- 
mal is orthogonal to the first camera's optical axis, and 
the plane surface is not seen by the first camera since the 
camera then sees only the plane's edge. Equation (cl.1) 
can be used to solve for p3 in terms of p1 and 0,. Hence, 
we can take a to be a T  = ( p , ,  P2,  d ) .  Now az/aa = 
- ( (ag /aa) / (ag /az) ) .  Using ( c I . ~ ) ,  we get ap3/apl = 

-((af/ao,)/(af/ao,)) = -2p1/263 = - ( P , / P , ) .  
Similarly, ap, lap ,  = -( ( af/ap,) /( af/% 1 = 
- (p, /P3>. Hence, ag/az = P3 
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Lg= -1. 

Thus, 

APPENDIX D 
THE CYLINDER 

The canonical parameterization here is 

0 = g(x, y, 2) = (x - xo? + (Y - Yo? + (z - zo? 
2 - (a lx  + C X ~ Y  + ( ~ 3 2 )  - R~ 

UIxO + a2yO + = 0 

a: + a; + a; = 1. (d l  1 
The unit vector ( a l ,  a 2 ,  a3)T is in the direction of the 
cylinder axis, and the second equation in (dl) forces the 
point (xo, yo, zo) to be the point on the cylinder axis that 
is closest to the origin. Because of the third equation in 
(dl), we take two of the three ai to be independent param- 
eters, and because of the second equation we take two of 
xo, yo, zo to be independent parameters. Hence, we choose 
a = (xo, yo, a l ,  a 2 ,  R ) T .  Then 

aa3/aal = - a 1 / a 3 ,  a a 3 / a c ~ 2  = - ~ ~ 2 / a 3  

_ -  ag - -2(x - xo) 
ax0 

ag - -2(a1x  + a2y + a3z) x + z -  ( 2) - -  
dffl 

3 = -2(a1x  + a2y + a g )  y + z -  
aa2 ( 2) 

APPENDIX E 
THE GENERAL QUADRIC SURFACE 

The general quadric is given by 
2 0 = g(x ,  y, z) = a11x + 2a12xy + 2a13xz 

+ a22y2 + 2 ~ ~ ~ ~ 2  + a33z2 + 2U41X 

+ 2a42y + 2a43z + au. 
As can be seen in (el), the parameter values for a surface 
are not unique, as multiplication of all coefficients by the 
same arbitrary constant leaves the equation unchanged. 
Hence, a constraint must be imposed. One that results in 
quadric surface estimation that is invariant to the choice 
of origin location and axis orientation for the coordinate 
system used for describing the object is ’[ 11 

o = a:l + 2 ~ : ~  + 2ai3 + a;2 + 2 ~ ; ~  + ai3 - 2. 
( e l . 1 )  

Using (e l .  l),  we arbitrarily choose the dependent param- 
eter to be a33. We assume that at least one of ~ 1 3 ,  ~ 2 3 ,  a33,  
and a43 is nonzero. Otherwise, the surface would not be 
seen as we would have a ruled surface parallel to the z- 

Upon using (el) and (e l .  l ) ,  we obtain 

( e l )  

axis. Let aT = ( a l l ,  a12, a13, a22,  a233 a419  a 4 2 9  a43, ~44). 

ag - ag ag ag - - 2x - = 2y - = 2z, - = 1. 
aa41 ’ a 4 2  ’ a a 4 3  aa44 

Useofthe preceding andaz/aa = - ( ( ag /a ) / ( ag /az ) )  
leads to 

- (x2, 2xy, 2x2, y2, 2yz, 2x, 2y, 22, 1). (e2) 
Note that a33 can be obtained by solving (el .  l ) ,  and z can 
be obtained by solving (el). 
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